Onsemi

System Solution Guide - Preview

USB-C Battery Charger

Table of Contents

Get Latest Version

Overview					
Applications	03				
System Purpose	04				
Market Information & Trend					
USB-C Battery Charger Market Outlook, Extended Power Range & Types	05 06				
Faster Data Transfer Capabilities, Protocol Compatibility, GaN Technology					
System Implementation					
Architectures and Main Stages	07				
System Description					
USB Type-C Pinout Configuration & USB-C PD specification	08				
AC-DC Power Conversion & PD Control	09				
Solution Overview					
Block Diagram - USB-C Battery Charger	10				
USB-C PD Charger Reference Designs	11				
Topologies	13				
650V GaN HEMT with Integrated Driver (iGaN)	14				
T10 LV-MV MOSFETs	15				
SiC Cascode JFETs PFC Controller NCP1680	16				
QR Flyback Controller NCP1345	17 19				
USB-C Port Controlle	20				
COB C FOR CONTROLL	20				
Recommended Produ	22				
System Solution Guide USB-C Battery					
ONSEM					

Register now to unlock all System Solution Guides

Full Guide Preview

Get Latest Version

Table of Cardwolk

Assista
Ass

Controller

Controller

Service

Servic

Contains

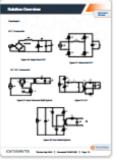
Contai

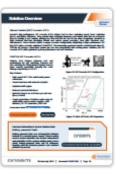
Appelent implement after

Fig. 10 Fig.

Pyrolem Chronophine

S. V. Sancer Street


S. San

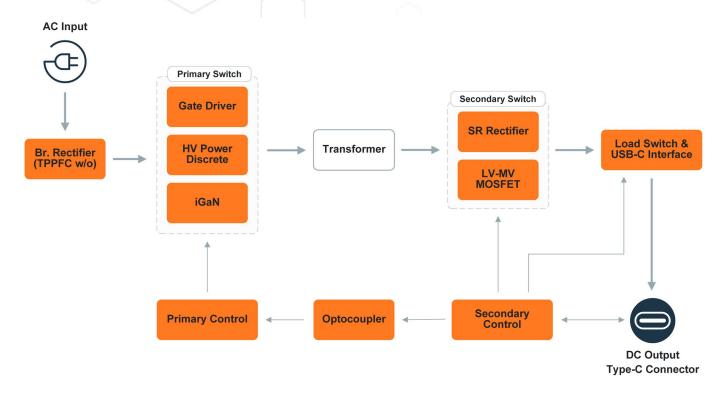

Subtract Consistent

But and the subtract of t

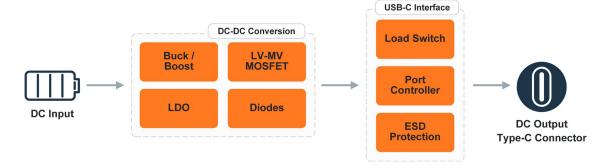
And Allers Charge year.

See Land Charge Charge Year.

See Land


Block Diagram - USB-C Battery Charger

Get Latest Version


Block Diagram - USB-C Battery Charger

The block diagram below represents USB-C Battery Charger solution created by **onsemi**. The diagram illustrates the power management and power conversion technologies utilized in USB-C battery chargers. It features components such as the TP PFC controller, High-Frequency Quasi-Resonant Flyback / LLC controllers, gate drivers, synchronous rectification, as well as iGaN and MOSFET devices. These elements are categorized into primary and secondary stages to enhance system efficiency. Majority of the functional block devices can be sourced by the **onsemi** solutions as shown in the following device tables.

USB-C Battery Charger - AC Input

USB-C Battery Charger - DC Input (Auto)

Use our Interactive Block Diagrams Tool

Open IBD Tool

USB-C Charger Reference Designs

Get Latest Version

USB-C PD Charger Reference Designs

Leveraging the robust technical expertise, **onsemi** offers a suite of highly efficient system reference designs and evaluation boards, as shown in Table 2.

Table 2: onsemi's series of USB-C PD system reference boards

Power Rating	Topologies	Support	Output Voltage	Efficiency (Max.)	Typical Application
<u>65 W</u>	HF QR Flyback + SR	PD3.0 & PPS protocol	3 V - 21 V (PPS)	> 93%	Smart phone, PAD, NB adapter
<u>100 W</u>	CrM Boost PFC+HF QR Flyback + SR	PD3.0 & PPS protocol	3 V - 21 V (PPS)	> 92%	Smart phone, PAD, NB adapter
<u>240 W</u>	TP CrM PFC + 2 Switch Flyback	PD3.1 EPR	up to 48 V	> 95%	Adapter for computer and smartphone, Industrial and lighting power supply
<u>240 W</u>	TP CrM PFC + LLC UHD	PD3.1 EPR	up to 48 V	> 96%	Adapter for computer and smartphone, Industrial and lighting power supply

240W TP CrM PFC + 2 Switch Flyback Reference Design

This design used **onsemi**'s power management controllers including <u>TP PFC controller</u>, <u>HF QR Flyback controller</u>, <u>half-bridge gate driver</u> and <u>synchronous rectified controller</u>. The Gate driver integrated GaN FETs are also used for power switching for the 240W USB-C PD3.1 adapter solution.

Figure 6: EVB of 240W TPFC + 2SW QR Flyback

Find Reference Design

Features

- AC input from 90V to 264V
- Totempole CrM PFC + 2SW Flyback Topology
- · High Frequency operation with iGaN
- Simulated circuit to support PD3.1 multi-output
- Output voltage 5V, 9V, 12, 15V, 20V, 28V, 36V & 48V / 5A
- Ripple & Noise: <150 mV
- Efficiency: AVG 94.75% / 95.43% & Full load 95.12% / 96.17% @115VAC / 230VAC and 48V / 5A
- Output precise OVP, OCP, SCP, Open loop protection
- PCBA size: 89mm x 51mm x 21.5mm, 40W/in^3

USB-C Port Controllers

onsemi's USB-C port controllers deliver autonomous operation with high energy efficiency and voltage tolerance, enhancing system stability, performance, and cost-effectiveness. The fully configurable USB-C PD controller is designed for solutions up to 100W and 40x less power consumption than competitors, making them an ideal choice for modern electronic devices.

USB-C PD Controller FUSB302B/T

Target system designers looking to implement a DRP/SRC/SNK USB Type-C connector with low amount of programmability.

Key Features:

- USB Type-C 1.3 and Power Delivery (PD) 2.0, 3.0 Compatible
- Full open-source software support supporting all modes of operation and ARM, Linux and PIC hardware platforms
- Integrated VCONN to CCx Switch
- · Robust BMC receiver tolerance
- Multiple product IDs for I2C slave address options
- · Family Product Differences
 - FUSB302B DRP, to enable charging in dead battery
 - FUSB302T SRC, for power savings in travel adapters
- 14-lead MLP (2.50mm x 2.50mm), -B/T/VMPX
- 9-ball WCSP (1.260mm x 1.215mm), -BUCX

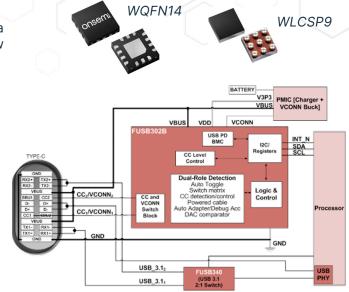


Figure 28: Typical Application Schematic

QFN12

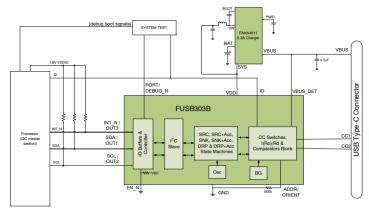


Figure 29: Typical I²C Application Schematic

USB-C Controller FUSB303B

Features configurable address I²C access to support multiple ports per system or it can operate autonomously configured by just pins.

Key Features:

- Fully autonomous configurable Type-C controller
 - Supports USB Type-CTM Specification Release 1.3
 - Configurable as Source, Sink, and DRP roles with Accessory support
 - Source and Sink preferred roles through Try.SRC and Try.SNK
 - o Configuration through GPIO or I²C
- Unique detection algorithms to ensure stable attaches with illegal cables and devices
- Robust Max 28V DC and 4 kV HBM ESD on connector pins
- Wide 2.7V to 5.5V VDD supply operation
- 12-Id QFN (1.6mm x 1.6mm x 0.375mm)

USB-C Battery Charger

Get Latest Version

onsem

Intelligent Technology. Better Future.

Register now to unlock all System Solution Guides and get additional exclusive benefits!

- Join the conversation on community forum.
- Utilize Elite Power Simulator & other developer tools.
- Watch exclusive webinars and seminars.

Open full System Solution Guide

onsemi, the onsemi logo, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.